Photoelectron and UV Spectroscopic Investigations of Homoconjugative Interactions between Parallel C=C and N=N Bonds')

Karin Beck^a, Siegfried Hünig *², *Gerd Kleefeld*^b, *Hans-Dieter Martin* *^b, *Karl Peters^c, Frank Prokschy², and <i>Hans Georg von Schnering* *^c

Institut fiir Organische Chemie, Universitat Wiirzburg', Am Hubland, D-8700 Wurzburg, Institut für Organische Chemie, Universität Düsseldorf^b, Universitatsstr. **1,** D-4000 Diisseldorf, und Max-Planck-Institut für Festkörperforschung^e, Heisenbergstr. 1, D-7000 Stuttgart 80

Received May 28, 1985

The photoelectron and UV spectra of diazaisodrin systems **4** and **5** have been measured and analyzed. The strong homoconjugative interaction between the $C = C$ and $N = N$ bond is reflected in a particular destabilized position of the norbornene type π orbital. The UV spectra have been assigned using a CNDO-CI treatment and excellent agreement between observed and calculated values has been achieved. The transanular $\pi_{-} \rightarrow \pi$ ^{$*$} transition which is not discernible in the parent hydrocarbon can easily be identified in the diaza derivative. X-ray structure determination of **4a** and **5a** confirms the conclusions arrived at by semiempirical calculations.

Photoelektronen- und UV-spektroskopische Untersuchungen zur Homokonjugation zwischen parallelen $C = C$ **- und** $N = N$ **-Bindungen**¹⁾

Die Photoelektronen- und UV-Spektren von Diazaisodrinen **4** und **5** wurden gemessen und analysiert. Die beträchtliche Homokonjugation zwischen $C = C - \text{und } N = N - \text{Bindungen spie-}$ gelt sich in einem deutlich destabilisierten x-Orbital vom Norbornentyp wider. Die UV-Spektren wurden mit Hilfe der CNDO-CI-Methode interpretiert, und es ergab sich eine ausgezeichnete Übereinstimmung zwischen beobachteten und berechneten Werten. Der transanulare $\pi_{-} \rightarrow \pi_{+}^{*}$ -Übergang, der im Stammkohlenwasserstoff nicht erkennbar ist, läßt sich im Diazaderivat leicht identifizieren. Rontgenstrukturanalysen von **4 a** und **5a** bestatigen im wesentlichen die durch semiempirische Methoden erhaltenen Strukturvorschlage.

The transanular interaction between parallel $C = C$ double bonds as in 1, 2, and **3** displays in different spectroscopical and photochemical properties of such compound^^.^). Whereas the **UV** and **PE** spectra as well as the photoreactivity of norbornadiene **(1)** and barrelene **(2)** have been intensively studied, comparatively little information existed about the homoconjugative interaction between the *C=C* double bonds **of** the dechlorinated isodrin **3.**

The PE spectrum⁴⁾ shows a particularly destabilized π orbital at 8.1 eV. A recent investigation of the photoreactivity') of **3** shows its strong trend towards cyclization under direct as well as under sensitized photolysis ($\Phi \approx 0.5$ or 1.0). The UV spectrum of 3^{3} (intensive end absorption with a shoulder at 218 nm, $\varepsilon = 13000$ and ε_{254} = 2000) predicates little or nothing about the location of the long wavelength $\pi_{-} \rightarrow \pi_{+}^{*}$ transition which should be responsible for the photocyclization. This transition (symmetry forbidden in C_{2v}) might for two reasons be separately perceivable in diazaisodrins of type **45).** On the one hand the reduced symmetry can remove or at least relax the forbiddenness of the transition, on the other hand the inductive effect of the N-atoms may cause a hypsochromic shift of possible perturbing $\sigma \rightarrow \pi^*$ excitations⁶⁾.

In the following the UV and PE spectra of **4** and its CC-hydrogenated derivatives **5** will be discussed.

Photoelectron and *UV* Spectra

given in Table 1 and the UV excitation energies are given in Table 2, Figure 1 shows the **He(1)-PE** spectra of **4a** and **5a.** The ionization energies are

Discussion of the PE Spectra

Empirical Correlations and ZDO Model

The first two PE bands of 3 can be related to the π^{-1} and π^{-1} ionization processes (see *9* and **lo)').**

The replacement of a CC double bond by the $N = N$ group should show the following predictable effects⁷⁾:

a) stabilization of the π ₋ combination to a level with a dominating C = C contribution and

b) an energetically comparable ionization corresponding to the n^{-1} process,

c) an n_+ level which will be about 3 eV more stable than the n_- orbital,

d) a π_{NN} orbital which will be about 2.5 eV more difficult to ionize than the corresponding π_{CC} orbital.

1) The PE band at 8.60 eV in the spectrum of **4a** must contain the two ionization processes n^{-1} and π_{CC}^{-1} . The n₋ ionizations of 5a (8.40 eV) and 8 (8.80 eV) on the one hand and the fact that the π_{CC} orbital energy must be larger or the same as

Tab. 1. **Vertical ionization energies of 34), 4a, 5a, 67a), 77a), and 8'") (in eV), values rounded to the nearest** 0.1 **or 0.05 eV**

	$I_{m,1}$	$I_{m,2}$	$I_{m,3}$	$I_{m,4}$	$I_{m,5}$
3	8.10	9.35	10.00		
4а		8.60	10.45	to	11.10
5a	8.40		10.0	to	11.0
6	7.90	8.65	9.10	10.15	
7	7.95	9.90	to	11.0	
8	8.80	9.25	10.7	11.4	

Chem. Ber. 119 (1986)

in 8 (≥ -9.25 eV) on the other hand support this assumption. The probable homoconjugative interaction in **4a** can only have a destabilizing effect on the π_{CC} level.

2) The difference in n- orbital energies that is observed in **4a** and **6,** respectively $(\Delta n_{-} = 0.7 \text{ eV})$, corresponds exactly to the value found for the pair 2,3-diazabicyclo^{[2.2.2]oct-2-ene and 2,3-diazabicyclo^[2.2.1]hept-2-ene $(\Delta n = 0.64 \text{ eV}^{\text{7b}})$.} The lower n₋ ionization energy of the [2.2.2]system roots a) in a geometrical difference as well as b) in a diverse degree of σ contribution. The NNC angle in **4a** is smaller than that of 6 by about $7^{\circ 7b,c}$. The consequence will be a slight increase in the n_{-} ionization energy of **4a**. Since σ orbitals of suitable symmetry of mixing with n_{-} are higher in bicyclo[2.2.2] octane than in bicyclo-[2.2.1]heptane⁷⁴, the destabilization of n_{-} in 6 is in part due to a more efficient contribution of the σ skeleton.

3) The location of the n_+ and π_{NN} levels can only be estimated. In 5a the n_+ orbital should appear at about $8.40 + 2.95 = 11.35$ eV and π_{NN} will supposedly be found at $8.40 + 2.5 = 10.9$ eV^{7a}). Therefore, the other bands which can be observed in this area must be ascribed to ionizations of the σ skeleton.

4) The empirical **ZDO** parameters of the homoconjugative interaction will naturally be affected with large inaccuracy since the unperturbed and perturbed π_{NN} levels are only accessible by estimations. The π_{CC} basis energy of 4a is proved to be -8.9 eV (norbornene), but the π_{NN} basis energy of -10.9 eV (see 3)) is only estimated. An approximate effective interaction parameter of $H_{\text{eff}} \approx -0.8 \text{ eV}$ can be deduced. Despite the inaccuracy in $\varepsilon(\pi_{NN})$ this value is reasonable and corresponds with the parameters of other isodrins^{7a}) (3: -0.63 eV, 6: -0.62 eV).

MO Calculations

With the help of the MNDO method⁸⁾ the geometries of the diazaisodrins 4a and **5a** were optimized. This method has proved reliable for the transanular distances in isodrins^{7a,9}. The resulting geometries were therefore also used for other

methods, like: CNDO/2¹⁰⁾, HAM/3¹¹⁾, STO-3G¹²⁾ and MINDO/3¹³⁾. Table 3 shows the results of these calculations compared with the experimental ionization energies $(\varepsilon_i = -I_{m,i})$ of **4a.**

3	(C_6H_{12})	218 (sh) (13000)	$\epsilon_{254} = 2000$
4a	(C_6H_{14})	261(236)	362 (386)
4b	(C_6H_{14})	260 (198)	369 (340)
5а	(C_6H_{14})		353(612)
5b	(C_6H_{14})		359 (460)

Tab. 2. UV Absorption, λ [nm] (e), of 3^{3} , 4a, 4b, 5a, and $5b^{5}$

Tab. 3. Comparison of orbital energies of **4a** with experimental values according to various methods (all values in eV), $c(n_+)$: coefficient at N in the highest n_+ level

Orbital	CNDO/2	MNDO	HAM/3	$STO-3G$	MINDO/3	exp.
n_{-}	-11.81	-10.63	-7.90	-7.63	-8.42	-8.60
π_{CC}	-11.58	-9.63	-8.73	-7.33	-8.76	-8.60
π_{NN}	-14.26	-11.73	-10.64	-10.06	-9.97	-10.45
n_{+}	-13.71	-12.15	-10.84	-10.89	-9.48	to -11.1
Δn	1.90	1.52	2.94	3.26	1.06	\approx 2.5
Δπ	2.68	2.10	1.91	2.73	1.21	\approx 2.5
$c(n_+)$	0.22	0.25	0.36	0.33	0.57	

Nearly all methods describe in particular the symmetrical combinations π_{NN} and n_{+} as mostly delocalized molecular orbitals, that is to say there are several orbitals which are of n_+ character. This peculiarity has already been drawn attention to^{7b)}. The extent of the delocalization of the highest n_{+} levels can be seen in the coefficients in Table 3. It would be wrong to say that there is only one single n₊ orbital. In 11 (n₋), 12 (π_{CC}), 13 (π_{NN}), and 14 (n₊) some molecular orbitals of **4a** with their most important atomic components are represented. Usually, bicyclic azo compounds show Δn values of about 3 eV^{7a-c)}. A comparison of these values with the results **of** the calculation methods in Table 3 shows, that HAM/ 3 and STO-3G are capable of reproducing this split far better than other methods and that especially MIND0/3 is dissatisfactory in that respect. The same applies to the $\Delta \pi$ split. However the absolute location of the two highest levels (n₋ and π_{cc}) is very well predicted by MINDO/3. To get an idea of the extent of the influence of methyl groups MNDO calculations were performed for **4a, b,** and **c** which resulted in the optimized transanular distances of 289 pm for **4a** and **b** and 293 pm for **4c.** These values are in excellent correspondence to existing experimental data^{7a)}. An increasing number of methyl groups for the sequence $4c <$ **4a** < **4b** effects an increasing destabilization of the levels n_{-} , π_{CC} , π_{+}^{*} and π_{-}^{*} .

Figure 2. Correlation of the experimentally assigned n₋ and π_{CC} **ionization energies for 3,** \vec{a} **,** \vec{b} **, and 8.** π_{CC} : Norbornene-type orbital, $\pi_{\text{CC}}^{\text{C}}$: Cyclopentene-type orbital

The average value for the effect of two methyl groups is 0.15 eV for $n_$, 0.03 eV for π_{CC} , 0.04 eV for π ^{*} and π ^{*}. Figure 2 shows a correlation of the experimentally assigned levels n_{max} and π_{CC} for the abovementioned azo compounds.

Discussion of the UV Spectra

Empirical Assignment

In cyclic azo compounds the longest wavelenght singlet transition is of $n_{-} \rightarrow \pi^{*}$ type¹⁴⁾. Therefore, the band at about 360 nm in 4 and 5° must be related to this excitation. Methyl groups at the bridgehead atoms $(4a \rightarrow 4b)$ cause a shift of 7 nm to higher wavelenghts. However, more interesting is the influence of the neighbouring CC double bonds. Hydrogenation $(4a \rightarrow 5a)$ causes a hypsochromic shift of 9 nm to lower wavelenghts.

It is most unlikely that the second transition in **4** (at about **260** nm) is caused by another $n \rightarrow \pi^*$ excitation since this band does not appear in the spectra of hydrogenated derivatives. An obvious interpretation of this phenomenon would be to ascribe this band to the $\pi_{-} \rightarrow \pi_{+}^{*}$ transition which is symmetry forbidden in the norbornadiene $(1)^{15,16}$ and isodrin system 3^{3} .

SCF-CI Calculations

CNDO-CI calculations¹⁷ have proved reliable for calculating the $n_{-} \rightarrow \pi^*$ transition. Thus, the wavelenght of this excitation in **2,3-diazabicyclo[2.2.2]oct-2-ene** $(\lambda = 385 \text{ nm}, \log \varepsilon = 1.70)$ is very well predicted (experimental values: $\lambda =$ 377 nm, $\log \epsilon = 2.75^{7a}$. Therefore, the excitation energies of 4 and 5 were calculated using the CNDO-S method¹⁷⁾ with forty singly excited configurations. Table **4** shows the results for **4a, 4b, Sa,** and **5b.**

There is excellent correspondence with the experimental absorption bands (see Table 2) and the transition at 260 nm **(4a** and **4b)** can be assigned to an almost pure $\pi_{-} \rightarrow \pi_{+}^{*}$ configuration (12 \rightarrow 15). The long-wave $n_{-} \rightarrow \pi_{+}^{*}$ transition, too, has been calculated as a dominating $n_{-} \rightarrow \pi_{+}^{*}$ excitation, i. e. 11 \rightarrow 15. The HAM/ 3 method also gives satisfying transition energies, but the influence of configuration interaction proves to be negligible. Concerning the influence of the methyl groups, it must be said, that the CNDO/S-CI as well as the HAM/3 method are inappropriate to reproduce the bathochromic shift of the $n = \rightarrow \pi^*$ excitation. Neither is the hypsochromic shift, caused by hydrogenation of the CC double bond, reflected in the data of Table **4.** Yet, the origin of both phenomena are obviously the following: an increasing number of methyl groups influences the σ -system and thus also the n_{-} level stronger than the π system. This is clearly proved by the abovementioned MNDO calculations. Since the $n_{-} \rightarrow \pi_{+}^{*}$ excitation is predominantly characterized by this configuration, the effect of the methyl groups can be attributed to a destabilization of the **n-** orbital. In addition to that it is remarkable that the CNDO/S differences in orbital energies Δ (4a) = $\varepsilon(\pi^*) - \varepsilon(n)$ = 10.09 eV and Δ (5a) = ε (π ^{*}) - ε (n₋) = 10.14 eV, in contrast to the CI treat-

Tab. 4. Transition energies (eV), λ (nm), oscillator strengths, and state symmetries according to CNDO/S-CI for **4a, 4b, 5a,** and **5b**

	A' $(n_{-} \rightarrow \pi_{+}^{*})$		$\frac{1}{2}$	$A''(\pi_-\rightarrow\pi_+^*)$		$\%$
4а	3.36, 369 3.69, 336	0.003 0.002	70.5	4.60, 270 4.19, 296	0.000 0.001	95.7
4b	3.37, 368 3.69, 336	0.001 0.002	73.5	4.67, 266 4.29, 289	0.000 0.001	97.3
5а	3.33, 373 3.69, 336	0.003 0.001	71.6			
5b	3.38, 367 3.69, 336	0.001 0.001	76.4			

The first row for each compound gives the transition energies (eV), (state symmetry A' or **A"),** h(nm), and oscillator strengths according to CNDO/S-CI (40 configurations). The second row shows the results according to HAM/3 (without CI; inclusion **of** CI does not change the energies or intensities). The contribution of the designated configuration is given *(YO).*

ment, give correct values for the hypsochromic shift of hydrogenated compounds and that the calculated difference of 0.05 eV corresponds to a shift from 362 nm to 356 nm, as it is observed. Thus, the longer wavelenght $n_{-} \rightarrow \pi_{+}^{*}$ absorption of **4a** compared to that of 5a can be attributed to the lower lying π ^{*} orbital of **4a** compared to the π^* orbital of **5a**. This transanular influence on the π^* energies has been proved experimentally in the isodrin **3** by electron transmission spectroscopy 18 .

Structure Determination of 4a and 5a by X-ray Diffraction

As mentioned above the MNDO method is satisfactory for calculating the transanular distances in isodrins^{7a)}: 4a 289 pm, 5a 307 pm. The structure analyses

Tab. 5. Crystal data and summary of intensity data collection and structure refinement for **4a** and **5a**

ł,

Tab. 6. Positional (\times 10⁴) and thermal (\times 10³) parameters (\AA^2). U_{ij} is defined for $\exp[-2\pi^2(U_{11}b^2a^{*2}+\cdots 2U_{12}hka^{*}b^{*})]$; numbers in parentheses represent standard deviations

Tab. 7. Bond lengths in pm and angles in deg (standard deviations)

\mathbf{r}

verify the absolute distance as well as the increased distance caused by hydrogenation: **4a 280** pm, **5a 287** pm. The measured transanular distances of **287** pm and 282 pm between the two $N = N$ double bonds in an asymmetric tetraaza derivative also lie in this range¹⁹⁾.

Colourless, transparent crystals of **4 a** and **5a** could be obtained from n-hexane. Their cell parameters were determined basing on 15 reflections on a Syntex-P3 four-circle diffractometer. Measurement of the intensities: ω -scan, Mo- K_{α} , scan range = 1° , $2\theta_{\text{max}}$ = 55°. Evaluation with the programme SHELXTL 83 on an Eclipse S/250. The signs of the number of structural factors listed in Table *5* and thus the atomic positions of the molecules could be determined by direct methods. The refinements of the parameters by anisotropic least-squares cycles lead to the given *R* values. The positions of the hydrogen atoms were calculated geometrically and considered isotropically in all refinements²⁰⁾.

Figure **3.** Perspective drawing of the molecules with the labeling of the atoms corresponding **to** Tables **6** and **7**

This work was supported by the *Fonds der Chemischen Industrie,* the *Dr. Jost-Henkel-Stifiung* and *BASF Aktiengesellschaf.* The authors express appreciation to Prof. Dr. *P. Rademacher* for measuring the PE spectra (UPG **200).**

- **3J** *G. Jones,* **11,** *W. G. Becker,* and *S. Chiang,* J. Am. Chem. SOC. **105, 1269 (1983).**
- **4J** *H. D. Martin* and *R. Schwesinger,* Chem. Ber. **107, 3143 (1974).**

^{&#}x27;) Small and medium rings, Part **54,** Part **53:** *H. D. Martin, M. Miiller, B. Mayer, H. Haddad, A. Steigel, G. Distefano.* and *A. Modelli,* Chern. Ber. submitted.

^{*)} *A.* Y. *Meyer* and *R. Pasternak,* Tetrahedron *33,* **3239 (1977).**

^{&#}x27;) *K. Beck, A. Hiihn, S. Hiinig,* and *F. Prokschy,* Chem. Ber. **117, 517 (1984);** *B. Albert, W. Berning, C. Burschka, S. Hiinig,* and *F. Prokschy,* ebenda **117, 1465 (1984).**

⁶ *F. A. Van-Catledge, J. Am. Chem. Soc.* **93**, 4365 (1971).
⁷⁰^{7a} *B. Albert, W. Berning, C. Burschka, S. Hünig, H. D. Martin, and F. Prokschy, Chem.
Ber. 114, 423 (1981).* $-$ *^{7b} <i>R. J. Boyd, J. C. Bünzli, J. P. Sn D. M. Lemal,* Helv. Chim. Acta **56, 1933 (1973).** - **7d)** *P. Bischof. J. A. Hashmall, E. Heilbronner,* and *V. Hornung.* Helv. Chim. Acta **52, 1745 (1969);** *J. M. Lehn* and *G. Wipff,* Theor. Chirn. Acta **33, 43 (1974).**

M. J. S. Dewar and *W. 7'hiel.* J. Am. Chem. SOC. **99, 4899 (1977);** *W. Thiel,* QCPE, Nr. **438.**

- *0. Ermer.* Aspekte von Kraftfeldrechnungen, Wolfgang Baur Verlag, Miinchen **1981.**
- ¹⁰ *J. A. Pople and D. L. Beveridge, Approximate Molecular Orbital Theory, McGraw-Hill Book Company, New York 1970.
¹¹⁾ <i>L. Asbrink, C. Fridh, and E. Lindholm, Chem. Phys. Lett. 52, 69, 72 (1977); QCPE, Nr. 393.*
-
- 12 W. J. Hehre, R. F. Stewart, and J. A. Pople, J. Chem. Phys. 51, 2657 (1969).
- **13)** *R.* **C.** *Bingham, M. J.* **S.** *Dewar,* and *D. H. Lo,* J. Am. Chem. **SOC.** *97,* **1285 (1975).**
- ¹⁴ B. S. Solomon, T. F. Thomas, and C. Steel, J. Am. Chem. Soc. 90, 2249 (1968); H. Meier and K. P. Zeller, Angew. Chem. 89, 876 (1977); Angew. Chem., Int. Ed. Engl. 16, 835 **(1977);** *P.* **S.** *Engel* and *C. Steel,* Acc. Chem. Res. **6, 275 (1973).** *D. A. Lightner, J. K. Gawronski,* and *T. D. Bouman,* J. Am. Chem. SOC. **102, 5749 (1980).**
- **j6)** *H. D. Martin* and *B. Mayer,* Angew. Chem. **95,281 (1983);** Angew. Chem., Int. Ed. En@. **22, 283 (1983).**
- ¹⁷⁾ *J. DelBene* and *H. H. Jaffé*, *J. Chem. Phys. 48, 1807 (1968); H. H. Jaffé*, QCPE, Nr. 315.
- V. *Balaji, K. D. Jordan, P. D. Burrow, M. N. Paddon-Row,* and *H. K. Patney,* J. *Am.* Chem. SOC. **104,6849 (1982).**
- ¹⁹⁾ *H. Prinzbach, G. Fischer, G. Rihs, G. Sedelmeier, E. Heilbronner, and Z. Yang, Tetrahedron* Lett. 23, **1251 (1982).**
- ²⁰⁾ Further details of the structure determination are deposited at the Fachinformationszentrum Energie, Physik, Mathematik, **D-7514 Eggenstein-Leopoldshafen.** These data are available with quotation of the registry number CSD **51 664,** the authors, and the reference to this publication.

[115/85]